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Abstract

This paper iS concerned With a computer program USed _or Studies of the
disturbed zones _trourid botiieS in flowing pl_mma_, partier_arly Spacecraft and
heir ass6ciatedSheathsand wakes. The progr_km s01veSa coupledPoisson-
laSovsystem of n0nlinea_partial-differential-lntegralequationstoobtaindiStri-

bUtionsofeleCtriCPOtentialand 1Offand electrondensityabouta finlte-length
Cylinderina plasma flowat arbitraryionMath numbers. USing theauthor,s
"inside-outmethod''6which fOllOwsionand electrontrajectOrieSbackward totheir
originat thebody surt'aceor inthe undisturbedplasma, to_ethet_ witha special
iterationalgorithmfor self-ctmslst_ncy_the pr0geam takesintoac¢0ufRthe parti-
Cle thermal motions withrelattvelyfew _implifyin_assumptions. The appi'oachis
appllcableto a lhrgerrange ofpaz'/tmeterstlianOtheravailableapproacheS, in
SstnpleealcUlati0nS,bodiesup to 100 Debye le_igthsinradiusare treated,thatiS,
lar_er than any previously treated realistically. Applteatl0ris a_e made tt_ irl-sitU
satellite expez'iments.
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l. INTROI)IJCT|ON

_,_ The problem Of theoretically calculating the structure of the disturbed plasma

i _ (freqUently re'erring to the w_ke and/or sheath) around a moving body in space in-
_ vOlves the solution of a complicated system of coupled nohlinear p_rtlal differerltial/

_i integral equations. L The equtttions cOnsiSt of the Vlasov (cOlliS[onleSs Boltzmann)
c

°il eqt_ationS for the ions anct electronS, and the PoissOn equatiofl relating the electr|c-
- :_ field to the distributions of ions and electrons. The difficulty iS essentially a ""

.,;_ nttmerical one becaUse analytic Solutions are not pOSSible (for eases of intereSt)0

,_ and there iS no u_ique approach. In cases of StatiOnary bodies. _'5 aS Well as

-=_,_. moving bodies (theoretical _efereaceS cited by Parker 11. combinations of numeri-

__. cal teeh1_iques (finite differences, iteration, quadratureS, etc. ) are required for

= i_, treating VariOus parts Of the problem. For either StatlOnary Or moving bodies.

.... the chOlces of technlqt_eS _nd their use to achi_V_ consistent solt_tions for any

_ given set of physical parameters (defining body and plasma) have never been

-'_!" ObvioUs. InnoVatiOnS are frequently required. The purpose of this paper is tO

.'-_ pt'esent a technique suitable for a pillbox-Shaped body (With emph_tsis on the

!i: wake)0 1 which appears tb be reasotmbly Successful over a large range Of the physi-
>

cal parametei_S0 and tO present Sample solut[on_ iflchtding appilc_ttionS tO iti-Sltu

:_'-_. spacecraft data. The pillbox problem is illustrated Schematically irt Figure I.

°%. _k-. ,_ _

-%.
o

i;

:,, Figure 1. Spacecraft and
_- Plasma-Flow Geometi-y

,,: k
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Various apprOaChes whivh have been used for this type tff problem are sum-

marized by Paz'ker. 1 In all sttCh cMcutattons, simplifying assumptions are made, j
The customary ones are:

(I) Collisionsne_llglble(butextensionsof Parker,s collisionaltheo,-y4 may be

feasible fox_ the ware problem).
(2) Geomagnetic field negligible.

(3) Simplifiedgeometry ('useof varioustypesof symmetries). "-

(4) Simplifiedsurfacereactions(usu_lly,charged particlesare neutz'alized).

(5) Prescribed surfaceemiSSiOn (USuallynone, but SimplifiedphOtoelectrOn,

back._catteredoelectron,and secondary-electrOnemissibn are includable)..

(fi)Conductingbody (usut_llyperfectlyconducting,but finiteconductlvlties

are includable).

(_/)SteadyState.

These asSumptiOns may be qt_estivned(forexample the neglectof time-

dependentphenomena), but theymay be at leastpsrtialiyrelaxedby employing

known teclmiquestogeneralizethe calculations.In the interesto_ achievin_

reasOtmblyeconomical e_IculationsW_thittthelimitsof ava{i_blecompt_tere,the

above aSSumptionS intheirusual,form are adoptedin thepresentwork.

The technique_aridco_ruter program describedby ParkerI have been devel-

oped tosolve the cbupledPoisson-Vl_sov system ofequatiot_stoobtaindistribu-

tionsof ionantielectrondensity,and potential,aboutthree-dlmensionalbodies

{withaxialsymmetry aboutthe directionof plasmvtflow). The method involvesthe

Use t)fa numerical _ridor mesh ofdiscretepointsin space, withthe potentlaiand

densitydistribUtlbnsdefinedatthese points. The Pt)issonand Vladov equationsare

repx_esented in finite-difference form at the grid pointS. A sample o_ Etuch a di_-

cretiz_tioniflr-_ space is ShoWn IriFigure 2. He_'ethe pottiesrepresentcircular

zings aboutthe e-axle. AsSociatedwithe_ch pointisa volume, ihtheform of a

cylinderforpointsaloflgthe axis,arielintheform of a ternsOf rectangularcross-

SectiOn fOz_ all other points.

For the pillbox problem of Figure 1, the grid used has the form sltown in

Figure 3. The spacecraft Surface is shown by a heavy outli_e iri the interior of the

grid. The surfaceof thepillboscoincideswith certi_iftrows _ind_olumnS Ofgrid

points aS shown. Here, the grid potntg are urie_luaily Spaced, so that a higher

density of points can be used near the spacecrai!t SUrface and a lower deflslty

fiirth@x_ away. This allows a given mlntber of grid points to be utied el_flcieritiy.

The potentials at potnts on the Surface can Vary arbitrarily; the potential dtetrtbu-

tion shown corresponds to one part of the stix_face belril_ at one potential (the

"_robb") while the remainder i_i at anotherpotthtial. (The sui'face can consist of

p_x_tiOns with arbitrai'ily assigri_d conductivity dhd ttntsst_h characteristics. The

, acmai ntimbex_ o! grid points used was of the order of hundreds, i-athi_r than tens

_3
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-:_" FigUre 2. DtscretlzatIo_ in r_ Space

_: aS tllust/'ated. ) The shaded areas surrounding grid points _tre the croSs-SectionS

_" Of tOrOidal volumes aS in Figt_e 2. At the outer b_und&ry of the grid, one must

-_!; represent numerically the bo_tldary condition at infinity, namely, SUCh that the

=i_. potential v_niSh and the velovity distribution be the unperturbed one. This boundary

-_: must be sufficLently far Out to represeht the outer conditioi_ accurately. It turns

-_:i'. Out to be more efficient to use a "floating" rather that_ a "fixed" condition On the
_! potential (Section 3).

_,... While the present problem Is axially sy_hmetric, it can be generalized tO three

_, dimensions ae _olioWS. The grid in Figure 3 consists of points in r-_ space, and

_ " the asso_|ated volumes _tre tor{. The generalization would _otiSist Of inelutilng the

; azimuthal v_riation by adding an azimuthal angle _ to the _Oordinate System. The

_o! diseretization in # would _ohsist of h&ving b number of azimuthal planes in r and z.

-_: each labeled by & given v_tlue Of O. ThuS, fOz_example, the r-_. pl&ne of Figure

would be characterized by a given value of 0. Ti_e volumes asSOCiated _vtth the _rtd

:. points would then be pie-shaped.

;.:' _n the _ext SectiOn (Section 21 the "insitie-out" method for evaluating particle

.,.'' flt_eS arid densities (SolVing the "Vlas_v prObiem'i), de_reioped by the author 6 ifl

_:} 1964, will be discU_sed_ with _-eference tO the _rid of Flgur_ 3. Zn this method

-_i the ton and eiectron t_aJectOrie$ are fOilOw_d baci_rti in time, from the point In

_' sp&ce at which i( iS desired tO l_t)W the velocity distribdttonl to the source uf the

334

" ° _ " _, ._ o _ ,, ° ° ' e ° 9 "':, _ o ,o o_1,,_,,o

O0000004-TSD11



"_ o_i= Northboundary
l

J _

_-ii,, East
_,, West boundary :

' '_:' VI f_LJO 13 _ |4 z4
_;_: Surface

_!,. O 16 iS Za
_ _' I

[!,, : T ,IO j9

i i: 21 22 23 24
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i-_I_. SOuthboundary
_:;! Figure 3. Difference Equation Grid

. pa_'tlcles in the undisturbed plasma o_ at th_ Su_fa_e, whez_e th_ dlStributio_1_ are

known. Figure 4. referred tO again tf_ the ne_t Section, illuStrateS dchematlcally

_ ,. lio# a trajectory is traced backward from any point P and is toured _ither tO reach
_, the bOd_ Stt_,f_c_ or "inftntLy" at the boundary 0_ the grid. (Th_ point P is u_uaUy

"I/ but not necessarily one t_f the Spatial grid l_0iht_; it can alSt_ be _ surface polht. )_,_

i The "deita-factor" _tJR is a cUto¢¢ function, and t. J, and k are indices associated
i _= witli one o_ the trajectories used to evaiuate d_nsity or flux _s discuSSed in th_

i • lie_tL sectit)n. 't_hecase illttstrsted is _or contributtotis from the ambient plaat_d;

_" : l_oz"contribtittons frt_iU the surface, the values of 6 (zer0 and unity) are interchanged.

.!i_: S35
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' . .,_TO grid botlndory (Infinity) _iI, = I, and

i,:!. _ use COr'nputed v,.a
i ..... /--_

i"': // __ _.-.-----IOCoLvelocity (v_ li_ at P where,_.:_: , n iS evOluclted

/ P

I

°_" _.. , To body surface _ilk= 0

:I _ [valuation of _;tjk for (t,j,kl-th traject0ry by t_ollow|ng(revers|ble)

": traject0rte$ backwardJn time.

"I" Fly.ire 4. Basis of the lnStde-Ottt Method

"'_:. Figure 5 illust_at_ the four possible types of tt_ajectories which can contribute

! g!( to the p_rti_le density at a point. These are Types 1, 2, _ anti 4, so-named by

i ;5' Parker 4 and defined S$ follows:

i _i:: Type 1
i .ii_ One-way trajectories, goin_ f_om infinity to the Surface, ot" from tbe surface

i_o._,- to infinity.

•_,°_: Two-way trajectories fz_om infinity, whieh cotne in, p_tss through a po_itton at
_:' minimum distance froth the body surface, and _0 out _t_latn.

=_ '[NvO-W_yt_tJe_tories from the body surface, _htch go out, p_ss through a

__! position at m_imum dtstance from the body _u_taee, and cOthe in a_aln.

' o :i CloSed or ne_t_ly-clO_etl traJectot'teS which t)_blt about th_ body Indefinitely.
F.._:_' These c_n orily be pt_pulated and depopulated by colltsiOnS, Which are neglected in
i ,F _/! ,

_- _', the pi, e_ellt woz'k. An analysis of the effects of col.l.isions on Type-4 trajectories
._ _,
_-_ _ has been pe_ori'ned by Park_. 4

_j::_. , It shotdd be ri_ted their contHbL_tions to surfeice flu_tes can be comprised only of

i___r?:: Type-1.arid Type-_ ti'eJectories, While all four type_l cofltribUtt_ to ape ce cha_ge.

i :
d
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Figure 5. Types OfOrbits

InSection3 the "Poisson Problem" is discussed, where the electricfield

(potentialdiStributiOn)is computed with the i_n and electrondensitiesconsidered

known.. On theotllerhand, the '_Via$ovProblen_"(Section2)involvescomputation

of the ion and electronden$1tieswiththe fieldconsideredknown. Hence, since

neither the field no_ the particle densities are known initially, the Poiss_n and

VlaSOv problems must be Solved simultaneously.

An iteration method may be used for computing _elf_cohslst_nt charged-

particle and pOtentlal distributions. Thf.s is herein re_erred tO as the "Poissotl-

V1asov iteration. " TwO pritlcipal options are _mploy_d for this procedure in the

present program. In otte of the opttorts, the "charge-density" optiOnj the space

charge i_ initially and arbitrarily assumed to be zero. For this case, one obtains

the Laplace (space-chai'ge-less) electric field from the PoiSson problem. This is

tht_ "zero-order" potential distr|butivfl, which Becomes input to the.Vlasov problem.

The/'esUlting solution of the ViaSOv pi'oblem yields the ion _nd electron densities

at the grid points, which are combined to mat..,,; "ze/'o-order" charge densities.

These become input to the next i_oisstm problem, which then yields the "fit'st-order"

poteritiaiS, arid so on. In this p/-ocedui'e one usually "mixes" successive charge-

d_nsity iterates to iinprove stability; othe/'wise, the process can "blow up. " One

can also mix pot_.litial itei-ates rather than densities if desired. The dependbnce
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Of the stability and conVergenCe Of the abo_e prOcedUre On the talking patSmctci _

have been studted analytically by Parker _ and Parker and Sullivan. _ (No 6that

analysis of this type has been published tO the authortS knowledge, ) This (charge-

density} option iS most effective when the Spatial region of iflterest is not tOO many

Debye length_ across. The analysis Shows that otle can (probably always) choose a

rflixiug parameter suffieientiy small to ensure cOnvergetiee, but at the expense of
additional iteratlot_s.

In the other Option, the "ion-density option, " the ion density distribtttion alone _"

isassumed initially.Initialguesses which can be employed include(I)zero ion

densityeverywhere, (2)unition density(theambient value)ever_here, and (3)the

neutralion densitywhich obtains_hen there are no forces. Whichever choiceiS

made for the initialguess is designatedthe "zero-order" ion density. Now ifone .....

can assume theelectrondensitytobe givenby the B01tzm_nn factorexp(_),thus

avoidingtrajectorycalculationsfor the electronsand affording_omputer economy,

the PoisSon equationm_y be solved,holdingthe ion densitiesfixed,bt:tregarding

boththepotentialsand the electrondensitiesatthe gridpointsaS unknowns. This

iS a nonlinearpr0blem, which iS solvableby a m0dificatRm Ofthe relaxationpro-

cedure used for the "charge-density"option. The new procedttreis artimportant

advance Sincethe iterationtsnot as sensiti_,e(tendingtoblc_ Up) for areal1Debye

numbers aS inthe _har_e densityoption. Thus, very largebodies (inmultiples

ofthe Debye length)can be treated. This has been themethod ttSedtoobtainthe -

large-bodyresultsshown below.1 Similarideashave been used by Call9 and

F0urnier,I0 but thdsewoi'kershave not treated:targebodies.

The assumption thatthe electrOndensityiS givenby the Boltz_ann factor

becomes invalidwhen the body surfacepotenti_lisnear zero, or when thereis a

potentialbarrierOr "well"inthe wake Such thatthe wake potentialsare more nega-

tivethanthe Surfacepotential(cauSingelectronstobe attractedtothe surface

ratherthanrepelledfrom it).Inthiscase itis stillpossibleto use the ion-denSity

option,wltliitslarge-b0dy capability,provided that,withineaeh "major" iteration

cyelea "mirror" iterationis carriedotltWiththe ion densitiesheld fixedsuch that

the electrondenSitieSare computed re_tlistlcallyby trajectorycalculations,at

leastforpointsnear the Surface.

This latterteeliniqueis aS yet in an expez_ImentalStage,but itSeems promif3-

in_ inthatitmay produce soluti0nswithreasonablecostsfor iarge-b0dpproblems;

insuch problems, the conventionalPoiSson-Vlasov iterationbased On the charge-

densRy optionbecOmeS expensive.8 A disadvantageofthe ion-densityoption,

however, is_ha_itscotivergenceproperties_.r_riotundez'st00d;therefore,itscosts

are dlfficuittOpredict. "i_hlstsiricotit_-asttothe case Ofthe cliarg_-densityoptlori

where ah ansiyslsIsavaiiable.8
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Before c0kksideving fl_%_thet-detallS, we rn_ke here Sonde genez'al ren_rks cOn_

ce_ning the method. FollOwing this, the pi'incipal resu].ts will be summarized.

Briefly, the present approach 1 d_ff_rS from thOSe 6f_Call 9 and Martin 11 by

including both the ion and the electron thermal motiOnS, Whereas Call and Martin

represent the distribution of io_ by a cold beam and use an "outside-in" method. 1

The approach differs from that of Tayl0r 12 in that (1) it is applied to thl-ee-dimen-

sional bodies whereas Taylor treats an infLnitely-long "thick Strip" of rectangular _'

cr0SS-sect_oU, and (2) the Poisson and Vlasov oalcuiatt0nS are cycled unti_ self _

consistency is acltieeed, whereas Taylor_S calet_lation i_ not Self-c0nsiStent beCauSe

it iS terminafed after the first cycle. The approach differs f_or_ that of GrabowSki

and FiScher 13 because they (1) asstlme that qua_ineutrality holds ever_here (an

invalid assumption in the very near Wake - See below and Section S)0 and (2) apply

their method to an infinitely-long cylinder. Di_erences _ith other methods are

outlined in Parker. 1 The most similar calculation previously done Was for an

infinitelyol_ng cylinder by Fourniero 10 using the inside-out method. The preserlt

atkthor has used the method for two-electrode rocket-borne 7 and laborhtory probe

system_, 4 foz_ the problem of a small probe in the sheath of a large electrode, 4 and

most re_entl_ for the pz_0blem-_ the piilbox-shaped Space_raft. 1 The in_ideoout

method v_aS also used by Parker and %Vhipple 14 for the the_r_ of a satellite flush-

mounted probe.

Two major adVanQes are represented by the present program° as oppOSed to

pk'eVioue-approa_hes, particularly wttl_ regard to Wakes of three-dimensional

bodies:

(1) Thermal motions of ions as v_ell aS of electrons are treated realisticdlly

by following their trajectok'i_S in the electric field. (The ion and electron tempera-

tures can be different. )

(2) The techniqLte for achieving self-consiStenCy iS prok_istng for large bodies

many orders-of-magnitLtde larger th_.n the Debye length (the Shuttle-Orbiter or the

moon° for example).

Solutions may be obtained _lth reasonable amounts Of _0mputer time by

judicious choices Of grid points and other numer{c$l parameters. The method can

be extended to include an az_bitrariiyoshaped body (preSently h body of revolution),

electron emission fi'om the _urface, and differential eharglfig when the surface

consists of Sections with different conductivity.

In Sections 2 and 3 s0me detaU$ of the techniques for the flux and density

calculation ("ViaSov problem")° dfid fO_"the PoissOn caictilati_)n0 are treated.

Sample calcUlat|onsl _'eSultS are presented in Sections 4 and 5.
/
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l.| Suhilna_yOf Principal Uesuhs

The principal-resUlts ate _foll0ws. in-sltu experiments associated with the

Al, iel 1 and Explorer 31 satellites a_'e modeled by a pilibox geometry. The Ariel L

experiment observed distinct wake structures a_Sociated With the main body and a

small external ion probe. Transverse p_oflles o_: electron current a_e measured

: at 5 main-body radii doWust=eam. The two wake structured are similar in that

they both showy a below-ambient _ent_sl core or peak within a depleted-_egion Of the

o_'der of the wLdth of the mair_body. The theoretical results lot- the a_sUmed values

of the parameters associated wLtlt the experiment Show nO well-def£ned central, core,

They further show that all structure dies away beyond 6 or 8 radiL downstream.

A pronounced electrica],.focusing o_ ions in the wake of the highly-negative ion probe

is predicted by the calculation, but this diStUrbance iS confined to the relatively

near wake arid does not persist doWnStream, The fil_Ling of the wake in both cases

by the plasma st_ggests a-fluid-like bulk motion of the plasma. AS one moves down-

Stream with the plaSma, the motion is at first radially inward. This iS followed by

, a pile-up and a single "both_Ce" atter which the motio_.f_-o_twa_l,---Sim_sly,

the diStm-bance becomes weak and dies away.

Two Ex_Iore_ 31 cases r,re co_zipi_ted for d_ferent values of the ibm, Mach

nt_mber (the Other para,._eiers rema_.ning roughly com_rable), and i_ both cases

the body iS-several kT negative, lu the ease of the larger MaCh_Um:.er (3.4), the

ion density i_ the near wake is below the _o_responding electron density, and both

are signlficant_y be10w ambient, This is consistent with the traditional picture of

wake dtructures with ion Mash numbers s[_ffic&ntly above unity. In the case of

the lower Math nttmber (I. I) the ion density in the near wake is above the correS-

_ ponding electron density, and moreover the ion density is roughly ambient. This

latter may seem unexpected, but is Understandable on the basis Of Lar_u_ir_robe

sheath theory: In the sheath of a Sl0wly-m0Ving hegative probe the ion density

sh0uld predominate Over the electron density. This latter result is new in wake

theory, and arises because 10W-Mach_number wakes with _paee cha_'ge have not

been previously rigO_0usly Computed.

For the wake of & large body (I00 Debye lengths in radius) in the form 6f a disk,

the results show that quasineutrality is v=lid Outside of a cone-dh_ped _egion in the

very near wake, and is invalid within this region. Other features of the large-body

wake structure include (1) a potential well in the near wake, and (2) a central core

of approximately ambient density of both ions and electrons. This latter feature

deems similar to that observed in the _rtel 1 experiment.
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!' There is more than o_e approach t_ the problem o_ c_Icul_ting sheath arid ware

i_,_: structureS. These _pproache_ have In common the full,wing elements. The q_ant[-

i:_i: ties to be _ompUted include (1) the potential distribution, and (_) the ion and electl_Oti

_. _ density distributionS. One may also include the associated Surface current dcnsi-

i-_ ties. The equations to be solved simultaneously are (1) the VI_S0v etttLatlon for ion_,

_ (2) the VI_SoV eqttation for elect_onS, and (3) the PotssOn equatiotL The soltitiOns
_._i',, of the Vlasov eq_ation_ (veioc_ty-distribut_on i_n_tionS) are _sed to compute n_mber

_:_ densities(andsurfaceCut-rentdensitieS).The numbez:_densltydist_'ibUtionsbecome

_ input to the (right-hand Side of the) Poisson eqdatiol_ Which yields the potential

:_,_: distribution. Finally, an iterative procedure iS used for self-ConsiStencyo Wherein

the density and pOtential di_tribUtion_ ate successively cycled ttntil satisfactory

_= convergence has beet_ achieved.

i-i!_, The steady-State Vlaso,_ eqttat[ou_ for tons lind electrons state that the veloc{ty

_ distribUtion, fun_tiOn_ remain cO_t,_nt along particle trajectories. With the electric
i !: field assumed given (numerically in terms Of a Spat[al grid about the body), Solving !
i%<: !
_ i; the VlaSOV equati_,ns means formally that one determineS, from the Shapes Of the_._
_!_ trajectt)rieS,the,ion and electronvelOCitydistributit)nsat the gridpoints. The tra-
_.i_:,
_. jectot-lesi-el_teiocalvelocitie_ata given grid_o_htto thoseat infiriityor the sur-

_'_ fa_e. Tlir0ugh these relationships, the ion or eleCtr0h number det_._ity at the poirlt

_i '_ may be e_,aluated by a v_locity-integral over the local velocity distribution. Sim-

i_!' iiarly,thecurrentdensitymay be evaluatedatdesired locations(usuallyth_body

i°f, surface).

ia It is convenient to classify various theoretical approaches on the basis of how

_°i/ they treat the trajectory part of the Vlasov problem. At_ "inside-out" method fol-

i_i'" lows the trajectories backward in time to their sdurc_, whil_ an "outslde-in" method
_:"_,/ followsthe trajectories_orward, inthedirectionof physicalmotion t_ftheparticles.

i_' {_ an oUtside-in method, the v_locity-diStriBUtion function is not calCulatedl rather,
_:i_i'_ the density is evaluated directly• ) There are in addition other (l_.qs _eahstic)

methotls InVOlving approxim_tionl_ where trajectories are not followed at all. The

_,i three types of approaches are disctissed in Parker. 1 There exists as yet no

::!_i systematic compa_'ison of the resUlt_ of the v_rious _ppr0hches with one another.

_! For the p_trp_se_ of discussing the inside-out method, we defifle here the para-
i": meters Of inte_'_st:

_=:_ l_lasma Parameters

."-,.! no -" Uripert_rbed nd'niber tleflsity at infinity

!_? Tl, Te -- Rm, electrtifl teii_perattire$ (-- T for _qtiai ion arid eiectrt_ri
_ tehiperatures)

?.

_ ii", m I = ion riiass (eiectl"oh i_ass hot i'equired_

i 34!
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_-D = electron Debye length

Body Parameters

R o -- characte_,istic dimension

v O = relatlve velocity of body and plasma

_o = body l_otential

_0 = e_b/kT6 = dimensionless body potential ,_
T

M--- _ _,o_mi/2kTi = i0_ Mach ntLmber (electron Math number asSU_Ited
negligible)

_D = _D/Ro = Debye number

Henceforth, all lengths are to be considered normalized by R o, Thus, _D will

denote the dimensionless Debye number. We also consider here the Case of equal

temperatures. Potentials are normalized by kT/eo so that ¢(_) denotes the dimen-

Sionless potential at the Spatialpoint 3. N_mber densities are normalized by no.

So that n(_) denotes the dimensionless density at 3. In the calculations inv01ving

integratLonS over velocitieS, _ will denote a velocity normalized by the value of

2kT/m aSsoCiated with the particles Of interest. Similarly, E wiU denote total

energy normali_ed by kT. Velocity-diStribUtion functions (denOted by f) will be

ho1_malized by no. For _ given b6_ly geometl-y, there are three dlmensiohle_S

physlcal parameters of interest, namely, _D 0 _o o and M. (For unequal tempera-

tures, the temperature _atio Ti/T e represents _n additional parameter. )

Consider a single species of (charged) particle, that is, ions or electr0nA.

The electric field is assumed to be know_. In 0rdel" to compute the number density

n(_ ) at the point _, one must evaluate the triple integral Over velocity spa_e:

n(_) = ///f_0 _) dv x dVydV_ (1)

Where f('_. _) is the distribution function which SatiSfies the Boltzmann equation

for the given species Of particle. _ is the radt_S vector of the _paee point Of interest.

and _ is the local velocity of a particle at _. The velocity-vOlume element is

written aS if cartesian coordinates Were being used, but tl_e product dVxdVydV z is
intended to Symbolize an arbitrary coordinate system. Similarly, in order to

compute the collected flux at points on the gurf_tce of a body, one must evaluate at

each point a triple ilttegral ove_ velocity spac_ Of the form

j(_) =///f(_. _) vndvxdvydv _ (2)

O0000004-TSEO,5
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_herLv n t_ the compotzent of the pst_ti_le velocity normal to the silt-face at the
petit r.

The probletU is thus to eva_ttate f. 9ince the problems 0f itttereSt &re a_umed

to be ColliSi0nlesS and C0n_tant in time, the distt-ibution fuflctio9 f satisfies the

Steady-State VlaSoV (or colliSionlesS Boltzmatl_t) ecluation, namely,

. Where _ iS the vector acceleration of a particle passing With Velocity _ through l

the point 3. The gradient operators _7 and _7v operate on the Components of-_ and
-- of _, reSpeCtively. EqtiatiOn (3) states that f is constant along a particle orbit,

• which is characterized by the cotzstants of the_uotion. In a general electrostatic

. field (here assumed given) whose sources are Volume and Sltr_ace ch_t-ges, the
total ene_-gy E iS consei-ved, where the dimet_sionlesS E is defined-by

E -_,._ + _(_) (4)

and _(_) _ the dlm_n_h)nleSS potential energy of the particle at _.

With _(_) a knOWtl fuiactioh of _, one may eVil, ate the integrals in E_is. (I)

and (2) by foliowi_g 01-bits backward In time with t1-_jeCtory calct_lations to a pbint

where f iS known. For ex_nple0 in the case of a body immersed in a pl_tsma, f

is assumed to be known at infinity (where g v_tn_Shes), and i/_ assumed b5 have at

trdit_ity a prescribed energy dtstt-ibution, such as a Mhxwelliat_ with drift, or a

more general diStributLon. Also, f is _B_tmed to be known on the surfaces of the

SpaceCraft. If a surface emits particleS, it0 distribution function mu0t be pres-

cribed. If the Surface absorbs without reemitflng charged particleS, the distribution

: function (of emitted p_rticles) i_ prescribed to be zero. Thus, f is diScofitirit_ous

:" in velocity space. That iS, the physlCally-possible veloclt_, Apace (at the p_int _)

iS divided into three d_malnso n_mely, the domain of orbits v_hich have come tO

from infinity° the domain Of orbit_ _hich have Come to _ from the sp/_cec_'aft _ur ,

faces, and the domain of t_apped Orbits (a$stzme_l to be unoccupied). The shapes of

the b6u_daz'ies between the domains depend, of couz;Seo on the geofnetry and the

potential _u_tiot_ _, and it iS the heart o_ the problem (I) to deterni|r_e the bound_-

: z;ies of the domains Of Orbitso a_id (2) to evaluate the integrals _qs. (I) and (2) over

those domains of velocity, Space.

In pz_$etice, one need not in _eneral determine explibitly the bound_iry of

domain in Wlbeity space. Rather, one may follow a large number of orbits back-

Ward in time (csrriptit_tionaliy)o _ind _/aluate the moment iritegrais_ Eqs. (I) and

(2), automati_al|y from the results 0f the orbR-foil/)wiflg. It may, howe#el-, urider

S_me clrctim_t_n_es be moire accurate _tnd efficient to determine this b_uridary. _'o

d0 so w()uld complicate the c_mputer pr#gi-_rnming.

_43

O0000004-TSE06



FO_ a MaxWelliBn distribtttton flowing along the z-dlrectlon wi_h M_,h number

M0 the dimenSlon_ss velocit_-distt-lbUti0tl fttnctiOn at i_fintty may be written, _

-(V_ + M2 - _Mvew) I "(_ + v2 + M2 ° _MV'z_) (5)

"i(velocities in ttnits Oi:_,

v-z- axial component of velocity)

2 =v 2
where Voo + _ may be identifiedwRh the totalenergy E, and _z_ wither-E-

times the cosine-ofthe anglebetween _ooand theaxis. A similarMaxweiliar_

i, distributionmay alsobe u_ed torepresentparticlesemittedfrom the surface. The
• !,{

moment integral(1}for_nttmb_r densitymay be approximatedby a quadratureSum

as follows:

" ///_fo ' J K )ijk

I n-- d3;"--Z r.A...+,.%
i j 1,+---_!z-+-.!Iz

_ Where d3_ is a short-hand notation for the element dVxdVydVzo and 6 is a ctlt6ff ii .i i+ (or step) _ut_ction, eqttal to unity Or zeroo depending on (I) whether the trajectory

_-__:_; ie found to come from infinity or the body surf&ce, and (2) whether n represents

the density contributed by parflcleB from infinity or from the surface. In the sutn, ';

; ° _, the three indi_es refer tO discrete values 0f three components of Velocity, Where

,. the valuesare chosen in accord witha quadraturescheme (Gaussian),and the°!: 1

"_' Aijk __. coefficients are proportional to the associated weights and other factorS. Each

_ _i. term in the s_'_ represents an indiVidual t_ajectOry. A simiiar Sum i_ obtained 'i
i .°i';

In order to evaluate Eq. (61 for the density, Or the corresponding equation for

i _ the flux0 we tr&tlsf6rm to energy (1_1 and angle (_, _1 variables in velocity spa_e.

+o +,:" We definea and, by:_:/'++:
-'-:+++ b = pol_tr af_gle Witli respect to z-axiS_-_

_ _i',. +B= azitnuthal angle with respect to the plane containing the z-axis and the

+_ ++ point _.

+ °x,+_ The angles _ and 0 which 0eflne the orientation of the#el6eity-vectbr _(Wbile_/_
_+i _teflnee its magnitu_ie) kre illustrated in Figure 6.

+o+. It is shb_vn by Parker 1 thai the integrals for_ both the d_nsity _intl _ttX c_in be
_ _'.. transPormed it) the toilt_wlng form sultabie f_r Gaussian c_adratures, _

¢+:::

:i+. 344
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Figure 6. Angle VariabieS inVelOcitySpace

1 I 1

I "-/ / / T(_t,b,c}. 6(_,b,c). dsdbdc . ('/)
J- J-J-11 1

I
Here, the r_ngeS of o,/3. _ntl ]_ haee been tran_formetl tb the Int_rv_l (-1, 11 through

the use of new Variablesa0b, and c. Interms oftheselattervariables,o,_° and

_:.._tregivenby

n(a) _ co_"I s ft#i"density
(8)

a la} = siri'l l+a for flux

_45
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_i_.

:. E(c)- 1-_:1+c+% (101

;!' where the range of a is from 0 to e for density _nd from 0 to _/2 for flux; the range

,i ot _ is fl'0m 0 tO _; and the range of E is from a s to lnfi.nity, where _s denotes the

_: potential of the SOurce (infinity Or the Surface).

i The-definition of T in the integrand of Eq. (71 tS as follows:
!Y

], E( " _ for density

= i e"U(a,b, c)..
_i, T(a, bo c) --" • (II)

=;_ 11- c)2 _:1_1-
;" "-'-T-- for flux

,

.6L

i where Ula, b, _) is given by

_ U(a, boc) = - _s +E(cI+M 2+2M E_E'_c). coSa_(a.b,c) (121

g,, With _ denotiflg the value of tl_e polar angle of tile veiocity-vector at infinity,

ffi!, which depends on the local value_ of _. _. and E (throt_h a, b, arid c). The product

_:, _-. c0S_ in Eq, (12) iS identical to the qttanttty v_ in Eq. (51.
Now itiS con_enlent for flexibilityto divide the a-domaln itltoM a equal Sub-

__ intervals, the b-domain tntt_ M b eqtml subinter_alSo anti the c-domain into M e

_i _ equal _ublntervals. and then tO use Gau_sian qua_ratureS of order 2 in each

_, subinterval. This leads to a Sum of the following form: I

_.;:. I'_-S= MaMbMe . T(alb_c_) • 6(alb_c_)
_,_. Ka=l Ja =1 Kb=l Jb--1 Ke=l Je=l•,:' ' (131
}" where

:' a_ = _ (-11 _+2K a" I-M a

i

;_ b' -"M_b ( '('l)Jb+2Kb- ' ° IV]b) (14}

)
.... o/

"!. c' 1 e

oL'!! e
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The Stttnof Eq, (15}consistsof8 MaMbM e termS, each Of which representsa
trajectory,followedbackward from the pointofinterest. The cutofffunction

5(ai,bjock) iSZero or unity0dependingupon the trajectorydefit_edby the ind[_es
i,J0 and k characterizingthe initialvelocitycomponents. The cage illustratedin

Figure 4 ISfor cOntributiOn_from the ambient plasma; for contributionsfrom the

surftt_eo5ijR iSzero Or ttnityaccordingas the trajectoryreaches infinityor the
body surface,respectively.

The computed resultstobe presentedlaterare ba_ed on the assumption of

no surfaceemission.

The method ofcomputationof orbitsinvolvesintegrationof the equationsOf

:_:_i motion, withthe forcesgivenby the components of the gradientsof potential.These

._t_:.: components are obtained by InterpOlatioti between _talueg of potential defined at the

'_!' pointsof the grid, gay of Figure 3, as desdribedinParker. I The criterionfor

......_" "escape" or "absorption"of an orbit(thatiS, evalut_tlonof5) depends offthe

_i geometry of the problem a_d of the grid. The equations of motion are integrated
::'_ gtep-by-step until the orbit either pa_Ses out of the outer bound_try of the grid

("escapes'*) or returns to the spacecraft Surface (is "absorbed"L _tie orbit compu-

°'°_i tation time-Step is not of physical importance in the_e time-independent prOblemS
_ t where only the _of the orbit matters. The time-_tep i_ kept aS large as
° _. possible consistent with matntatnlfl_ the energy loss or gain within desired li_nitS.

°iIi. The method.of integrating the equatiotm of motion, the lnterpolati0n method to find
° I_ the forces, and the control of step size,are discUSsed iri Parkei'.I

-_i_ An ImpOrtant consideration is tile accuracy of the quadrature-sum. Naturslly.

i_it', the accuracy is related to the nUfi_ber o_ terms used, that is, the number of orbits

o_ where each term corresponds to a uhltiu_ orbit. In a test of the ehergy quadrature

° i'. alone, and Wilt M = 0, the ur_perturbed value of dehsity (uflity) was computed for

o , 347
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_ values of M_ - 1., 2, 4, B, 1_, and 32. The c_orrespond|ng numerical errors werei
i -_ percent, .q peX'eent, +l. 5 pex*c, ..t, -0.0S pereel,t, +0. 013 percent, and +0. 003

_ / percent. This test WaS l_dependent of ge0t_etry (the a and _ itttegrSttonS were

i=: nttmertCally exact). Thus, Me = 4 (8 V_ltteS Of E) iS taken t_ represent sufficient
, aCCUraCy (within a few percent) for the purpoSeS Of computirlg density .'or a

i _' Maxwellian distribution without drift (or, for electronS}. For large M_eh nutflbez':

i {M) the accuracy of the _boVe unmodified quadrature is diminished. Modification
i for improving the acctwacy at large M by Suitably weighting the integrand in the

_: " domains of importance are given in Parl_er. 1i
1 •

_i: 3. TIlE POI$SON PROBLEM: POISSONI)IFFI,'RI'I_CEE_IIATIONS

In the present problem the electrostatic field is axially symmetric and is

°-._'. defined on a mesh of spatial grid points, such that at any point (including grid

• pointS) the potential and electric field can be obtained by interpolation.

i Assume that the space charge density iS known at the grid points. Consider a

! - grottp of interior grid points, forming a portion of the overall grid as shown in

i Figure 7. In t_is figure, the vertical and horizoht_l directions are the _ and r! -
i:" direetionS, reSpeCtively, _here _ and r denote the cylindrical axial and cylindric_l
I i

radial co0rdin_tes, respectively. Three hori_0.0ntal grid litreS, of constant z-valUeS| ,:,

I :' zi. 1. z t, and zi+ 1. and three vertical grid lines, of constant r-_lues rj.1, rj, and
_ r_+ 1. are shown in the figure. (Note that the index (i) of z increase_ as z decreaSeS. )
_ _e set of grid lines intersect at 9 grid p0itltS, or nodeS, as ShOwn. Each point

may be cOnSidered to be a_sociated with a volume of sp_ce, and to have a group o_

;: four neighboring points which "interact*' with it. Tht_, consider the central point
_: of the group, labeled C in the figure, which may be identified with one of the grid

points in Figure 3. ASsociated with thi_ point iS a volume of revolution (a toruS)

;. whose Cross-section iS rectangular anti is shown by the rectangular _haded area

i-=_ Surrounding. Point C. The Shaded area is defi_.ed by connecting the midpoint_ of

.: the. surl-ounding mesh rectangles. Let ,t deCtote the volume of the torus, and let

;:::, the ne|g_borlng points (above, below, to the right of. and to the left o_ C) be

• labeled N, S, E and W (nOrth, south, east anti west, reSpecttvely).
..

" _" I Let the Poisson equation be written in dimensionless form a_

:" _e nil

?.:

:_. where ne, n i, XD, $ and _ denbt_ the dimeflSlortlssS electron density, ion density,
::: Debye number, electrostatic potential and space-charge density, respectively, and

=ii" all lengths are in unit_ of the body radius.

_=_'

__t_A -r'c,r-.4 .4
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'. Figure ?. GroUp of Interior Gr_.d POints in r-_. (3rid
! ,2 .
! z,

' The grid lines may be considered tO be arbitrarily chosen so that the mesh

i!.
,_ intervals are nonuniform. In this ca_e the Poisson difference _quatlons may be

_i. obtained by integratingEq. (l't)over the Volume _"of the torus associated with
i-_.: Point C:

i !:: ///_j_i_: fff_2¢d*r--. ,d,_ ¢C,_- (18'i2,
i; q" 'r

_=i: where PC i_ known at the grid point C. The right-hand side ha_ been approximated

i-_!' as ShOWn since¢ issmall in principle, and 0 C iS the value Of 0 at POint C. By the
i ":

_ : divergence theorem,, the l_ft-ttand stde becomes
i i_"

_. ff_
i_L;' _,
i _ :' I'

!,, ,, +As _,_+,_(_+_,
,_,. ri _ °n/E W

i,!L.
k_-Z.... ,

:_,_ :_':-- : 7:_,__-::- ..............-"-........ _---_--:-_.... -.-.'. .....[ " } I ' "
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l_i where _ denotes the surface of the torus; 8_/8n is the component of v_ in the

outward normal diP_ction at the surface; AN.A s, AE0 and A w denote the aPea_ Of

;i: 18_/anlN,S, E, W denote _aluea of 85/8n taken to be constant on the corresponding
_,_, surfaces.

'if,!: _85/Sn)N, S. E, W may be approximated by difference quotientS, namely.

(_I "_" ("1%"
i}' N" °'i-l"'-i_ _ s-" "i" ei+lJ _o_

,11E - I) 1_w - ,1(_1,o,,,+,.,,, (_1; .- lr I -rj 11

,i/ where _ denotes the potential at Point C and _N o _. _E' _W denote the neighboring
:

potentials. IfPoint C i_ an interior grid point, the area_ A N. A S. A E. and A W

are given by

" [ rj) _ 'j.l )2 ]i AN = _ (rj+l + - (rj +

• A S = A N
i.. 121)

A E =_. (rj+l+rj) 1_i.I- zi+11

i:_:: =I (rj+rj.11(zi.-',_4": AW _" I #I+I)
i<:
_: antlthe volume _" i_ given by

= 2 " Zi+l)
i:

_, Thus we obtain the difference equ&tion in the form

_" (231_,' CN_ N + CS_S+ cz% + Cw_w - C_ ---pc_

'_::,: WhePe

! :;&:,. C = C N + CS + C]_ + C W 1241

_° ": . _ and
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AN AS ,

cN _ i_t.1-_i_ cs _ ,z,._i+z_

A_ AW
% _ _rj+1 - rj) Cw _ (rj - rj. x) (2_)

This shows how to form the difference equations used for the Poisson peOblemS of
afmo

this paper. Equation (24) holds Only for an "triter'ion" point of the grid, that is, a

point SurroUhded by neighbors On a11 four sides, if Point C has a khown neighbor-

ing potential (for example, if Point C is adjacent to the spacecraft surface), then

the corresponding tern_ on the left-hand side of Eq, (23) is transferred to the

right-hAnd Side a_ a known quantity.

The boundary conditions for (he potentials in the PoissOn probletn are as

fO110W_. At points representing the body surface, (he normalized potentials are

fixed at the chosen values. At the external (boundary) points of the grid, where

"infinity" is represented on the compute_, a "floating" condition is optlonally used,

namely, a linear relatlOn between _ and a_/Sn, the normal component of V_. The

exact relation of _ tO 8_/an is not important when the eXterntzl bout_dary Of the grid

iS sttffi_iently f_r away. (For the calcul_ttiOns to be reported, the aSst_med z'ela-

ti0fi Was the same aS for a CoulOmb potential. ) In any case, either the fixed

condition _ = 0 or the floating condition will give the same results, provided the

grid bOutldary is moved sufficiently fa_ out. The eff_t of Various typ_ of boundary

conditiOnS representing "infinity" have been studied by T&ylor TMand by Paf'ker

and Sullivan. 8 In general, the floating condition appears _o be computattonaUy

more efficient than the fixed one. Of course, the floating condition b_comes id_ai

when the tru_ relation between _ and 8_/8n iS used, but thi_ requires that the

asymptoti_ forn_ of the solution be knov_n in advance. For _xample, set._ Parker and

Whipple. 14 The boundary co_lditi0nS at the outer grid surfaces can be combina-

tions of fixed and floating conditions.

Consider a Point C on the outer boundary o_ the grid where a floating boundary

condition is chosen. It the potential is assumed to satisfy the linear law

Bn = = "_ _ (261

on the z-bouhdary (North or South), and

a_ = _ "'_ (zv)

351
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Oh the r-b0undary (EaSt only; _=U Oh the West), then the cOr=eSpOhding "neighbo_

term" on the le_t-hand Side Of F,q, (23) vanlshes,..and the cOr1"es_0ndlng "neighbor

coefficient" On the right-hand Side of Eq. (24) is replaced by_A or _A, where A I_--

,_: the appropriat_ area. The qu&ntitieS a And _ depend on the position and on the
' assumed model for the variation of the potential at large distances.

Once the coefficients of all of the equations (corr_spondit_g to the grid pOintS

where the pOtentialS are unlatoW_ art: computed, the system of linear equati0nd of

the form of Eq. (23) may be solved by iteration. Point-successive 0ver-relaxation

is a well-known process and has been found to be effective in the present problem.

For the relAXation process, one rearranges the equations. So that the "diagonal"

!i_, term iS alone on the left_hand side, while all the other terms are on the right-han_

sidewiththe known charge-densityterm, Thus, E_.__[23._b_ee_._m..e.._..................

C_ = C_Cs_ S + CE_ E + CV_W + pC • (28)

i:: FirSt, an inittal guess is m_de for the values of all the potentialS. Then new

_i; values are obtained from the left-hAnd sides of all Of the equations (281, using p_e-
vioua values on the right-hand sidles. One "sweeps" through the equationS success-

ively° replaciilg the potentials on the right-hand sides with-dpdated-valttes as they

> become availablefrom preceding eqUatiok_s,Th_ procedure isUsuallyStableai_d

!ii!, leads to cOnvergenCe. "Over-reli_ation '_ is the process of mt_ilag ._uece_si,ve

f" potential iterates in Such a way as tO enhance t_. rate of convergence, i
o_
_ When the potential distribution is such that the electron density ne iS appr0xi-

_ mable by the Boltzmann factor exp(_), the relLxation equations (28) can include the-- .......

;? electron density a_ an unknown function, on the left-hand side. The equations are
'i", then nonlinear; they may be sol, red for _ by a Newtonian process, with the ion

i!. density ni considered fixed. This pPocedure is promising for large-b0dy problemS, l'

_2_-, 4. SAMPLE RESULTSAPPLIED IN IN-S|TU DATA

_:'_ The calculatl0ri_ rep0rted here refer tO tWO in-sitU experimentS0 Ariel 115

:_: and Explorer 311_. where data are available. These results are preliminary in

l that they are tntei_ded aS an lUustratlon of the capability of the program rather

than as a systenlatie study. Geometrtckily, the body is assumed to be a pillbox, a

e_,lthder of height equal tO Its diameter. The three dimensionless physical para-

meters defining the pr0bl_m are _o' M, an_l _tD, defined (earlier} by:

':_ , e_o/kT

Li!'
- 'u,/

t,

i

t,
-t
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where T is the plasma tempe=ature (assumed to be the _Ame for tons and ele_tro_ns),

6o is the bOdy potential (for a _.ondu_tthg nonemlt'ting body), vots the velocity of
'i

the plasma fl0w relative to the body ahd p_rallel to its axis. m iS the ion l"nass. ,,.

Ro is the body radius° and XD is the dimen_i0nal Debye length.
The numerical parameters fOP the _aloul_ti0n_ to be described include 0f the

order of 100 grid points, diBtributed moStl,_ ta the wake region° al_d of the order ',

of 500 trajectories per grid point, dlStX-Lbuted among the two angles and the energy.

4.1 Ariel.) Satel|_-

Figure 8 is a Schematic drawing of the Ariel 1 satellite. Showing the location
of electr6n _;nd ion-probes, after Henderson and Samir. 15 The-bo0m-mouhted
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probe n_easures etectr-on-clxrrentS at a distance 5 R o from the centeX _ of the sstel_

iite (_ain-body) which has • radttts R o = 11.5 in o_ 29 cm. The ion probe mounted

nes_ the surface and on the spin ax_s is a sm_l sphere 6. _ ttnteS Smallet" than the

mai_ body. The Satellite _el0cit; is such that the ion Mach zmmber iS abOUt 4. The

satellite potential is about 4 kT (1 v0It) negative with x_espect to space. The satel-

: lite radius iS eq_ai tO abOUt 10 Debye lengths. Due to the satellite motion, spin,

arid-orientation, the boom probe swee_s through the wake during each spin reV01ti-

tiOn. In successive revolutions, it sweeps through at differen.n_t_a_gles and samples ,w.

the strttcture of different parts of the WaRe.

Figure 9 shoWS normalized electron curreIlt data taken-from the paper by

HenderSon- and Samir (their figure 4). 15 l_particular, the data at _) = 84 ° (labeled

"MAIN") samples the wake structur_ asSociated.with, the main body,. While the data

at 0 -- 60 ° (labele_ "I. P. ") samples the ware structure of the iori probe. We will

Consider-separ_ately the main body and ion probe in-the_gollO_ing comparisons

between the data and t_w.oreticai cak_Llation_- ........

4. 1. 1 ARIEL 1 MAIN BODY

AlthoUgh the data in Figure 9 is "bttmpy°" the _ = 840 profii_ f_r the main body

m_licates a mlf_oreentral peak or bump, of heigh_ about 80 percent of ambient,

within the depleted wake region where the minimum _S abOut 50 perCetlt of_ ambient.

Figure 10 shows transverse profiles computed f_)r the W_,ke of the m_in body,

Of ni (norn_alized ion density), ne (kiorrdalized electron density), and_ (dimension-

less potential) in the wake region d0_?_Stream. The parameter values in Figure 10

are _o = -4, M = 4, _D ffi i/I0. "l_hirteen major iterations (PoisSon-Viasov cycles)
were computed. The profiles _re in tx_ansverse planes at various distances down-

Stream, and s11 lengtlis are normalized by the body radiuS. ThuS, z denotes axial

distance downstream, in radii, wlth _ -- 0 defined aS the rear surface of the piUboX

(_ooking into the wake); af_d.r denotes radial or transverse distance from the axis

(r = I is the body x_adiUs). The profiles of n i. ne, and _ are arranged vertically in-

ox_det bf t_creaslng axial distance z. There are 8 vMiaes of z, namel_o z = 0.2,

0.5, I. 0, 2.0, 3.0, 4.0o 5.0, and 6.0. Each profile iS constructed of 9 vsiuei_

of r, namel_, t = 0, 0. I, 0.3, 0.6, 0.8, 1.0, 1.2, 1.5, amd2.0. The Outer-

bo*mdary conditions are ap'plied at z -- _ and r = 2; fox _ the main-bod_ problem, the

boundary condition at z = 6 is the fixed One, _hilz floating conditions are used

elsewhere. The profiles consist Of dtraight-line segrnent_ _onnecting the values of

the functions (ni, n e. or _) computed at 72 grid points in the wake rag{on.
The feature_ of the wake structure are as follows. The near wake (¢ < 1) is

clearly depleted 0t both ions and _lectrons, with the i,Jn deh_tty lower than the

electron dehsit_. Further downstream.the wake beeome_ increasingly _llied in,

between hbi_ut z = 1 and z = 4, where z = 4 iS the i0n-Mach-number of radii
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, _.... downstream. In thi_ range of z the i_n profiles tend tt_ be relatively noisy, indica-

i!*_,i ring SenS|tivtty to numerical e_i-o_S, which may in turn imply a tendency towai'd

-_ _i'_,:._ phySiCal inSt_Lbiiity. The trend of the ion and electron protil_s sugg_st_ a radially-

J_:i inward bulk m_tion of the plasma within the wake _s if it _ere a fluid Wave propaga-

_!_. t|ng inward, pilifl_ up near the cerKer, and bouncing out again as it moves down-

: .i, streafil. Tlte disturb_lhee has esSefltla_ly died away at z -- 6 radii downstream.
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There iv ao weli_defined Cetltral bump sim_al_ to that in the expe_'imental

data lt_ Figure 9.

4. J,. 2 ARIEL 1 ION PROBE

A ccordi_g tO Hehder$on and Sarnit" the pt'ofile in Figure 9 at b = nO° samples

the ion probe v_ake StruCture. This structure is similar to that of the main body,

having a below-ambient central peak within a depleted region Of about the same

width as that aSSociated with the main body. The ion probe iS about 1.7 Debye

lengths-in radius and iS biased at about 28 kT (7 volts) negative with respect to

space. Hence it may be expected to prOdUce at least a proriounced focusing effect,

as is borne out by the following computed results.

Figure 11 shows transverse profiles computed for the wake of the ion probe•

The notation is the same as that of Figure 10. The parameter ,_alueS are ¢o = -28,
M -- 4, and.)t D ffii/1.7. Ten major iteratiOnS were computed. The outer boundary

at z ffi10 was placed sufficiently far downstream to ensure that the disturbances of

inte_ceSt are contained within the grid. MoreOver, a floating condition iS employed ....

there as well as elsewhere. (The number of grit] points was large_r..th_n in the

main-body problem, )

• The main featttres are as fOllOws. The ion profile_ at z = 1 anti z = 2 show

that a strong focusing effect occurs near the body. Further downstream, however,

: the diSttlrban_e dies out; there iS essentially none at _. : 8 _nt] beyond.

The rat]tally-inward arid oUtwart] bulk motion of the plasma as it fill_ the wake

i_ again a fluid-llke feature. Again, there is rio persistent peak at the center of

thewake aS indicated by the data. If thi_ were. ari isolated body, the Henderson-

Samir data would imply that the peak persists far down,_tream to beyond a distance

of 33 rat]it. The present theoretical calculation int]lcatet3 no structure at z = 8 arid

beyond•

4.1, 3 COMMENT ON COMPARISON OF THEORY WITH EXPERIMENT

A centPal bump may perhaps be generally expected on the basis of nonrigorou$

theoretical arguments invt_kin_ (1) electro_tatic fbcuSing effects Or (2) convergence

of ion streams during the filling of the wake pvincipaily at a Math number of radii

downstream, or (3) a combinati_n of these. 15 However, previous theoretical

calctilati0ris indicating such bumps have been deficient in some respect with regard

to their rigorous appii_abiiity (for exantple, cold ionS, iafttiitely-loflg cylinders,

non-self-consistent). Simila,'ly, there have been iaboratory-simulation experiments

which i_ave indicated bumps. 17 However, it is presently still difticuit to simulate

io_ transvers_ vel0city distributions in-the _aboratory, arid th_ effective ion

temperature is generally too low. Hence, th,_re does not exist thus far an unambigu-

ous explariation of the Ariel i data. {Note: T i was not measured, but was assumed

here to be eqiial to T,e. Theoi-e{ically, bumps in the wake have been predicted for

T i less than Te.ll'l°)
357
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it is also of interest tO note that a ia_'ge body produces a centr_l_core enhanCe-

merit, as wLl| be showrt later.

4.:_ EXplorer31 Suti_llite

The results of this section were obtained in the process of computing a _umber

of $01utions to be compared with In-Stt_ data Obtained on the Explorer 31. The

parameters adopted were suggested by Samir (private communication) based on

8.different passes of the Explorer 31 satellite, as listed in his paper with Jew. 1_

A small pol-ti0n of two of these cases will be discussed here, Without a quantitative

comparison With data, in order to illustrate a specific point.

Figure 12 Shows computed electron and ion density t_'anSverse profiles in the

Very near wake of a body with the parameters

_o = -4.3

_D = (_"9)"1
M =3.4

These are the parameters in the case of Curve No. 1 of Samir and Jew. 16 The

computed profiles Ir_ Figure 12 are at z = 0.2 radii dowtlStream, that is, Similar

to the lowest profiles in Figure 10 where the parameters are of similar" order.

Here the vertical Scale (t_ormalized density) iS logarithmic, as opposed to FigUre

10. where it is linear. The ion densities are denoted by circles and the electron

densities by squa;'eS. The principal featUreS Sho_)n in Figure 12 al'e as follows.

FOr r greater than about 0.8 radii, the ton density iS higher than the electron

density. MOreover, the ion density drops more abr.uptly in the vicit_ity of the

"shoulder" (r _- 1) than the electron density. In the central wake both densities are

far below normal, with the ion density about an order of magnitude below the

electron density. This iS the usually-expecte_i picture of near-wake Structure.

Figure 13, on the other hat_d° ShOwS corresponding computational results for.

the case Of Curve No. 4 of Samir and Jew, 16 where the parameters are.

% = -5.4

XD = (3. 1)'1

I M =1. i

Here, the most Significantchan_e isthelower Mach number (i.i). The curves in

Figure 13 are _iualitatiVeiydifferentfrom thosein Figure 12. T_e new electroh

det_sit_profilei_ shifteddownward slightiy,bUt the new ion detlsityprofileis

moved up to approximatelya constatitrouglilyetiuaitothe no_-malvalue.
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i! The fact t::at the ton wake derlsity is ab0;e the electr0h density at all r may by

i: Unexpected from the point of view Of "traditional" wak_ theory, but soetns re_so,_blf,
'_i}:. on the basi_ of Lartt_utz' probe theory. 2-5 According zo probt _ theory, a Statimlas'y

i'_ negative electrostatic probe in a T)la3ma will htwe adjacent tO it a sheath in which

.:! the ion density exceeds the electron density, If the probe begirHa to move slowly
,o i,

,:,.i: relative to the plasma, One expectd the Sheatit Structure at first to be only slightly

changed, with a continuation o_ the predominance of the tons ores' the electrone,

",; At _ufficiently large VelOCity, however, the traditional wake StruCture with electron

,_.. dominatlor, over ion_ should appear aS in Figure 12, The value of ion Mach number

_ at which the transition should occur has not been predlcted but can be established

_ _' by additional computations of the present type.

,'_" 5. A I,AR(;E-BOI)Y PROBLE_I
e,_,_;

_iil)i' In thi_ section we consider the wake of a large body, I00 Debye lengths in

radiuS. 1 The body is in the form of a disk oriented normal to the flow. For this

case (Figure.S. 14 and 151 the parameter values are

l. Figure 14 Figure 15

¢o = -4 % :-4

kD-- (I00) "I AD -- 11001"1

:..i: Here the parameter values differ qualitatively from tho_e of the preceding problems

o_: in that AD i_ So small. This Size Of moving body is larger than has been previously
" :_2.: _. treated by trajectOry-folloWing, that iS, realistic, calculations. The results show

....._' what may be expected forthe wake structureof large bodiesingeneral. This c_se

_iI' requires more effort (computer time atld judicious _eleCtion of numerical para-

o_ meterS) thanthatof a sm_ller body. The solution__hown, therefore,are Intended.
_: to be illustrative rather than accurate.

,_° !i,'; SDt iterations,01"Pois_on-giasov cycles,_ere computed usin_the Ion-density

.....,_. option, in _#hich ducce_stve iterates were not mixed, _tartin_ with the neutral ion
°':i_. dvn_}ity as an Initial guess, The nominal tiumber of trajectories, 512, was used at

_'tl all _rtd poitits.

r_ !: The profiles of ni, tie, and _ tit Figure i4 are constructed l_ the same way and

_o_ at th_ same gi'id points as in Ftgure 10. Tabulated values ai'e given in Parker. 1
':,_i The Wake is essentially"empty" of.bofhions and electronsbetween z = 0 and z ---I,

- _" and begins to fill up between z = 2 and z = 3. In this way, th0 wake is qualitatively

oi!_ similar to thai in Figure 10.

-- _!_:_
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Two set, of iOn-denslty pro/ilee ate shown o_ the loftside of Figuz'e 14, the

: unlabeled pro Files for the Ith ordeP (Ith itez'ation), and the profiles labelod "A"

for the 5tll Order, CompariSon ot the he-Profiles with the 5th order ni-profiles

(labeled "A" to denote that tho _-profiles and ne-profileS in the figure are d_riv0d
_ from these} indicates that the quasineutrality assumption is valid everywhere out ....i i

_J side a cone-shaped region rea_" the wake surface: the co_e height along the axis is

between 1 arid 2 radii. Tilth is in accord with expectation for a large body. Near

the ware suz'face, howevez,, quaSifleutraltty iS violated because the effective Debye

_ length is large. The Similarity of the hi-profiles (labeled "A") and the ne profiles

_!. in Figure 14 is a consequence of near-quaSineutrality.
) CompariSon Of the 5th and 6th order ni-pr0files (labeled "A" and unlabeled)

in Figure 14 Show that the solution iS reasonably converged for • -- 1 and below,

but that there is iz_complete convergence at z = 2 and beyond. The incomplete

__) convergence and apparent structure at _ -- 2 and beyond may be artifactual due to

-! insufficient numerical accuracy. (No attempt was made to achieve high accuracy
L( since this WaS regarded as a preliminary run. ) The StrUcture and lack of conver-

: gence are seen to extendpast z = 5, sO thatthe downstream boundary shouldbe

:,_ placed furtherthanat _,-- 6.
_v DeSpitepossibleinaccuracieS,one may ihf_radditionalphysicalconclusions

-_ii ' indicated by Figure 14, namely, (1) the suggestion of a core of high (approximately

_. ambietit} density of ions and electrons on the axis, and (2) the occurrence ot a
potential w_il in the near ware. defined as a z_egi0n with }-values below -4, The

A

! shadinginthe two lOweSt _-profxlesdenotecross-sectionsof thiswell. The wake-

,, surfacenormalized fluxesare I.I X I0"8 (5thorder)and 2.4 × 10.7 (Sthorder)

:':. for ionS, and 4.3 X 10.3 fr, electrons. The electron current density t_ less than

_iiI, eX'p(-4), as would be expected in the presence of a potential well.
_:," The regionot wake disturbanceprobably extendsmore than6 radiidownstream,

" and between 2 and 3 radiiinthe transversedirection.

_!ii: Another large-body case {Figure 15)isSimilarto theprevious large-.body
," case except that tile Math number is increased from M = 4 to M = 8. Ten itera-

ti0nS were computed in which succeSsiVe iterates were used without mixing,

starting with uniform ambient ion detzsity. (The latter starting condition was in-

'_' advertently different from that of the M = 4 calculation which was started with the i

_ neutral ion d_nsity, but this difference Should become unimportant after many

-_! itez-ations. ) Similar Statem_,nts may be made about the incompleteness of the i

' convergence as in the M = 4 case. The 9th and 10th order iondensities are

labeled "A" and unlabeled, _-especttvely. On compai'ing these, the convergence

seems fairly good at _ = O. 5 and z _ 1. Again, the disturbance extends beyond
o ¢ = 5, so that the downsti'eam boundary should b_ moved further tnan _ -- _,

s,:,

3s4

,L,,

:;.:, : j

L.5: i " - _ I

v_.,'_ =::........... o _ ...., ...._. ..... . ,,..... : ' .... :_/iii__7-_- ...... o " 'i :_L- ..... " "
' " 0 <' ".... > - ,+_S
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:: Despite In_eeur.ci_s, the conslotefley Is such lhat phys|caI eoncluslons may

be drawn ae foll_W_, Iil thts ease, the wake [_ elten to remain empty further doCvn-
!.

_, stream th_n in the M _ 4 case. In addliion0 the su_gestlon is mush stronger thnt

there IS a central core of ambient densRy fop both tons arld electrons along the

_i: axis. Moreover, the pot_flttal well is wider atLd lohger than in {he M _ 4 ¢nse,

}_ although the depth Is about ;he sam0. The normalized Wak0-surface fluxes are

! o£ 7.4 X 10.30 (gth order) aP.d4.2 × 10..30 (lOth order) _or torts, and 3,7 x 10.3 for
_i. electronS. The electron flux is slightly less _han the M : 4 volU0, and Is again

i- '}: I_SS than exp(-4). _,

!i", The conical region behind the disk where quasineutrallty breaks down is now

!-,,':'ii longer than in the M = 4 case. extending to between z = 4 and z = 5 along the axis.

i ':: The _egltm of wake dl_turbarlce is probably longer than fl radii downstream,

i - il as in the M = 4 caae, but may not extend beyond about 2 radii in the transverse

i!i_l_ direction.i_°i!.

'i2:
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